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Abstract—This paper describes a baseline target tracking system
implemented using the GTRI/ONR Multiple-Input Multiple-
Output (MIMO) Radar Benchmark platform. MIMO radar
systems have been garnering a significant amount of attention
for their potential to improve overall radar performance in
comparison to existing systems. While there is much in the
current literature regarding the performance and parameter de-
sign of MIMO radar target tracking systems, there is little that
describes a complete target tracking solution. Such a solution
would integrate measurement processing, data assignment, and
track filtering into a single unit. The “MIMO tracker” described
in this paper aims to provide a starting point for such tracking
solutions. Although naı̈ve in some respects, this MIMO tracker
provides a comparison tool for new MIMO target tracking
algorithms. The results of running the tracker with the scenarios
provided in the GTRI/ONR MIMO Radar Benchmark are also
presented.
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1. INTRODUCTION

One of the primary tasks of a radar system is to track a single
target or multiple targets. Such a system may be composed
of several individual radars, networked together and sharing
their information, whether it be their own tracks or sensor
measurements, in order to generate a single track picture.
However, there is more to building such a system than just
sharing track states. More specifically, scheduling of radar
resources, measurement processing, data assignment, and
track filtering are examples of the components of a complete
tracking system.

Multiple-Input-Multiple-Output (MIMO) radars offer promise
in regard to improving the performance of target tracking,
specifically in their ability to estimate target state by ex-
ploiting spatial diversity[1]. Comparisons have been made
between MIMO radar and multistatic radars in this regard[2].
Several target detection and localization methods for MIMO
radar have also been developed[2][3][4]. Additionally, there
has been research done into MIMO radar’s ability to mitigate
the effects of clutter[5][6]. Since the primary definition of a
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MIMO radar system being a radar system with widely spaced
or colocated antennas transmitting orthogonal waveforms[7],
there has been also significant investigation into how one
designs these waveforms; [8] and [9] are but two examples.
Work has also been done in addressing the data assignment
problem[10][11][12].

As for tracking, MIMO radar tracking performance has
often been formulated in terms of the Cramér-Rao Lower
Bound (CRLB) of the track covariance of a particular sys-
tem[13][14][15]. The posterior CRLB has also been used
in determining how to allocate resources in a MIMO radar
system[16]. Track filtering has often been accomplished
through the use of sequential Monté Carlo methods[17], i.e.
particle filters, or the extended Kalman Filter (EKF)[14].
Particle filters have also been used when combining MIMO
techniques with the method of track-before-detect[18].

What is missing in most of the literature is an integration
of all of these various techniques and algorithms into a
single unit. Complete solutions have been developed[12],
but a baseline for comparison aside from comparing MIMO
tracking solutions to those of “conventional” phased array
radars is conspicuously absent. That is, there needs to be
an “apples to apples” comparison. We have developed a
MIMO tracking solution using the ONR/GTRI MIMO Radar
Benchmark[19] that aims to act as such a baseline. It is
not a sophisticated solution by any means, but provides an
implementation of each of the components required for a
so-called “MIMO tracker”. Additionally, it provides a first
answer to the challenge problem given in [19], as well as
demonstrating how to develop a tracking solution in the
MIMO Radar Benchmark.

This paper describes our MIMO tracking solution. It is di-
vided into the following sections: a short overview of the sys-
tem model in terms of how it considers the MIMO problem,
an overview of the tracker’s architecture, a description of how
radar dwells are scheduled by this tracker, an illustration of
sample results as generated by the MIMO Radar Benchmark,
and finally, we conclude.

2. MIMO SYSTEM MODEL

There are two primary aspects of the system model to be
considered for our solution: what model to use in processing
sensor measurements, and the model of what we refer to as a
coordinated MIMO dwell.

MIMO Radar as Bistatic Radar

We begin by considering a model for MIMO radar mea-
surements. Instead of considering the detailed signal model,
which in our case is left to the internals of the MIMO Radar
Benchmark, we will simplify by considering MIMO radar
as a series of bistatic pairs. Each pair will be characterized
by a particular orthogonal waveform, and have an associated
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Figure 1. Several bistatic ellipses for a transmitter located at
(x, y) = (−5, 0) and a receiver located at (10, 0). The target
is moving from (2, 10) to (10, 10) in the positive y direction.
The associated bistatic range for each ellipse is indicated on
the diagram.

bistatic radar range Rb:

Rb = RT + RR

where RT is the transmitter to target range and RR is the
target to receiver range, respectively. This is in contrast to
considering MIMO as a multistatic radar configuration. Mul-
tistatic configurations do not require orthogonal waveforms
and hence could violate the MIMO radar assumption. One
may note that treating MIMO radar as a large bistatic radar
system is atypical; however, careful examination of the signal
models given in the literature will show that the radar range
is usually treated in the same fashion as bistatic radar range,
even if that fact is not stated explicitly2.

The nature of bistatic range causes the generation of so-
called bistatic ellipses or contours of constant range with
their foci at the transmitter and receiver locations[20]. Ex-
amples of these ellipses are illustrated in Figure 1. This
aspect of bistatic range has consequences when considering
measurement uncertainty. Usually, a linearized form of the
measurement covariance is used in order to perform data
assignment. This linearized covariance has the shape of an
ellipsoid; the true covariance actually has the shape of a
contact lens. For bistatic radar, unlike monostatic, this contact
lens bends along the contour of constant range. Thus, the true
covariance may actually be (and often is) smaller in volume
than the linearized covariance.

As a final note, instead of the “standard” formulation of
bistatic range, we will instead use the alternate formulation:

Rb =
RT + RR

2
(1)

This equation causes the bistatic range to be equal to the
monostatic range if the transmitter and receiver are colocated.

MIMO Dwells and Sensor Tasking

One of the key concepts in the MIMO Radar Benchmark
is that of the coordinated MIMO dwell. Essentially, this

2For example, the model given in [18] exhibits this quality.

Figure 2. Illustration of the flow of data between the sensors
and the MIMO tracker.

allows several sensors to illuminate a region of space with
orthogonal waveforms and jointly obtain all of the bistatic
returns. This region of space is characterized by a single point
in space which is referred to as a beam point.

The MIMO Radar Benchmark allows different sensors to
participate in different MIMO dwells, which allows for al-
gorithms that specifically reduce radar energy and dwell
time, two of the main parameters in the challenge problem
described in [19].

MIMO dwells are initiated in the MIMO Benchmark by
populating a message with the appropriate parameters, which
include the beam point, the waveforms that are to be used, the
set of transmitting sensors, and the set of receiving sensors.
This message is then sent, and the MIMO Benchmark handles
scheduling the appropriate dwell requests on the appropriate
sensors and sending the resulting detection events to the
MIMO tracker. Note that the MIMO tracker cannot send
dwell requests directly to the sensors.

It should be noted that the sensors continue to maintain their
own tracks while the MIMO tracker is running. This is
to simulate real-world conditions: while sensors may send
measurements to a centralized tracker, they will also track
targets on their own in order to maintain situational awareness
and sensor autonomy. This is especially important in the
case of communications loss. Sensors will send their track
data to the MIMO tracker, and vice versa. In the latter case,
the sensors will attempt to correlate the MIMO tracks with
their own tracks. If any correlate, they will overwrite the
track states of the correlating tracks with the corresponding
MIMO track states. The flow of data in the system is thus
summarized by Figure 2.

3. TRACK PROCESSING

This section describes the core of the MIMO tracker: i.e. how
measurements are processed, assigned to tracks, and used to
update existing tracks or create new tracks. Tracks and their
associated data are kept in a track database, which stores
tracks currently being updated, as well as tracks that have
been marked as dropped from consideration.

Track processing is invoked each time the scheduler receives
all of the events containing the complex I and Q detection
voltages from the sensors that have participated in a particular
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MIMO dwell, which allows for joint processing of all of the
returns. Additionally, this group of events may also contain
the results of search dwells generated by individual sensors.

The tracking filter used is an Interacting Multiple Model
(IMM) filter [21] with two constant velocity models, ab-
breviated as “IMM-CVCV”. As such, some aspects of how
assignment takes place are dependent on the properties of this
filter. However, since the IMM-CVCV is a filter that is part
of a library of filters that is packaged with the MIMO Radar
Benchmark, these aspects are not necessarily of concern, as
they are handled automatically. Regardless, we discuss some
of them here for completeness.

Measurement Processing

Prior to data assignment and track filtering, the detection
voltages must be converted into something usable by those
components. Specifically, they must be transformed into
position measurements. Most of what is required to process
measurements into this form is provided as callable subrou-
tines by the benchmark, hence the algorithm will be described
here without delving too much into the details behind these
functions.

The radars that are used in the MIMO Radar Benchmark are
monopulse radars and generate sum-channel and difference-
channel (azimuth and elevation) complex voltages; hence,
monopulse direction of arrival estimation [22] is used to
convert the detection voltages into sine-space detection prim-
itives.

Next, the issue of detections that straddle range bins must be
addressed. It may be that what appears to be two different
detections in two range bins may actually be the same de-
tection, if the two detections are sufficiently close together
and are sufficiently close to the boundary of their respective
range bins. The primitives are thus clustered to group similar
detections together, and then centroided to extract a “true”
measurement from the clusters. Centroiding combines the
clustered detection primitives such that the variance of the
measurement is less than or equal to the variance of the “best”
detection primitive.

It is important to note that in some cases, the cluster-
ing/centroiding algorithm will be unable to cluster some
measurements. These measurements are referred to as limited
measurements and are given special consideration below.

The resulting measurements are then gated to make sure that
dubious measurements are removed from consideration by
the tracker. The measurements that remain may now be
assigned to tracks.

Data Assignment

Data assigment proceeds by first correcting the measurements
for refraction and sensor biases. We must then decide which
measurements are to associate with existing tracks or to
generate new tracks. If no tracks exist in the track database,
then all of the measurements are used to start new tracks.
Otherwise, we must first determine which tracks should be
considered, in order to prevent spending time attempting to
associate measurements with tracks that could not possibly
associate simply as a result of the distance between them.

In order to determine which tracks should be used in the
assignment process, first the distance of the beam point from
each of the tracks is computed. If this distance exceeds a

given gate value for a particular track, then that track will not
be considered in the data assignment process. If the resulting
set of tracks is empty, then all of the measurements will be
used to create new tracks.

Next, the costs that are used to assign measurements to
targets must be determined. The costs are computed using
a log-likelihood approach. First, a Mahalanobis distance d
between the track state and a measurement is calculated via
the following equation:

d(zk,xk,Rk,Pk) = (zk − xk)
T

(Rk + Pk)
−1

(zk − xk)
(2)

where zk and Rk are the measurement and measurement
covariance, respectively; and xk and Pk are the track state
and track covariance. The likelihood function

L(d) =
1

√

|2π(Pk + Rk)|
exp

(

−
1

2
d(zk,xk,Rk,Pk)

)

(3)
is then used to compute the likelihood for the measurement.3
This calculation is repeated for each of the measurements
and stored in a cost matrix; in the assignment, however,
− log(L(d)) is used as the cost value.

Once the costs are computed, a 2d assignment algorithm is
applied to assign the measurements to the appropriate tracks.
We use a modified Jonker-Volgenant assignment algorithm
[23], also referred to as Jonker-Volgenant-Castañon (JVC),
in order to perform the assignment. This is one of several
assignment algorithms included with the benchmark; e.g.
Bertsekas auction [24] and greedy nearest neighbor.

Any measurements that are unassigned are used to initiate
new tracks. Note, however, if one of these measurements
is a limited measurement, the track is marked as a limited
track. Also, if there are any limited measurements at all and if
any of the measurements in the complete set of measurements
actually associated with a track, then we do not initiate a new
track based on a limited measurement.

Track Filtering

As mentioned previously, the track filter used is an IMM
filter with two constant velocity models. The measurements
assigned to the appropriate track in the data assignment step
are used to update the track according to the IMM algorithm.
However, there are some restrictions on whether a particular
track is actually updated:

• The measurement is not limited.
• The measurement is limited, and the last track update was
also a limited measurement.
• The track is not a newly initiated track. Updates on initiated
tracks are performed during the next resource period.

If these conditions hold, then a given track is updated, and
its update count is incremented. This count is then used to
determine the track maturity, which is used to determine the
revisit rate for the track, as well as how many missed updates
are required before the track is dropped. There are three
levels of maturity: Infant, Tentative, and Firm. Maturity is
determined by the number of successful updates of a track.
For example, for a track to be declared Firm, the track must
have been updated at least 20 times. In general, the track
confirmation logic is an M out of N rule: i.e. if M successful

3| · | represents the matrix determinant.
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Table 1. Revisit rates according to track maturity

Infant 0.25 seconds
Tentative 0.5 seconds

Firm 1.0 seconds

updates out of N trials occur, promote the track to the next
maturity level.

Missed updates are determined by taking the set difference of
the tracks that were updated with all of the tracks in the track
database. Any tracks in the difference were the ones that were
missed; their miss counts are then incremented.

The revisit rate is then calculated based on the track maturity
prior to finishing the track filtering step. For each maturity,
the revisit rates are set to the values in Table 1. More
specifically, the more mature the track, the greater amount
of time between revisits. In the case of a missed update, the
revisit time is set to 0.25 seconds after the last sensor resource
period. Once the track database is updated with new and
updated entries, the track filtering step is completed. This
portion of the tracker then becomes idle until another group
of detection events is sent from the sensors.

4. SCHEDULING

In this section, we discuss how the MIMO tracker schedules
radar resources and MIMO dwells, and how the MIMO
tracker groups events together before they are passed down to
the lower processing layers. Note that in all cases, scheduling
is coordinated via special events that are placed on the MIMO
Benchmark event queue.

Autonomous Search

Search dwells are handled entirely by the sensors. They
execute fully autonomous search: the MIMO tracker has no
influence on when search dwells are scheduled. The resulting
detection events, as stated in Section 3, are sent to the MIMO
tracker along with any detection events that were the result of
track revisits.

Detection Grouping

In order to group detections, we first tag each MIMO dwell
request with an identifier. When the individual sensor dwell
requests are generated from the MIMO dwell request, the tag
is passed down to these dwell requests so that the results of
the MIMO dwell may be later grouped together when they
are returned to the MIMO tracker.

In order to keep track of which tags have been issued and
other properties regarding them, a tag database is maintained.
Aside from keeping the identifier and whether the tag is
currently being used, it stores which sensors are participating
in the dwell, which track will be affected by the dwell, and
the time at which the MIMO dwell should be processed.

As detection events are returned from the sensors, the MIMO
tracker examines the tag that has been attached to each event.
It then places the event into a list of events associated with
the tag. Once the dwell processing time has passed for a
particular tag, the associated set of detection events will be
sent to track processing.

Track Revisits

For existing tracks, revisit dwells must be scheduled. First,
out of the tracks that are valid in the track database, the revis-
ited tracks are selected based on the revisit time described in
Section 3.

Next, for each of the tracks that require a revisit, we deter-
mine which sensors should participate in the MIMO dwell.
This is straightforward: if the track state lies in the field of
view of a given sensor, then that sensor will participate as
both a transmitter and receiver. We then extrapolate a beam
point from the track state, and select a waveform and pulse
width.

Waveforms are selected such that a nominal signal-to-noise
ratio (SNR) is maintained for a particular track. For newly
formed tracks, waveforms with the maximum number of
pulses and power are used. However, the number of pulses is
stepped down based on 3dB steps of SNR for each subsequent
track update so long as the nominal SNR is maintained.
Otherwise, the number of pulses (and waveform power, if
applicable) is stepped back up in order to correct for the SNR
loss by effectively doubling the output power.

A tag is then assigned to the dwell request, and, finally, the
MIMO dwells requests are placed on the request queue.

5. EXAMPLE RESULTS

In this section, we provide results from running our solution
against the test scenarios provided with the benchmark [19];
Table 2 summarizes the active targets in each of the scenarios.
Table 3 summarizes the results across all of the scenarios;
each of the scenarios was run over 20 Monte Carlo runs,
with a runtime occurring during the scenarios starting at 400
seconds and ending at 700 seconds. We can see that, in
general, performance of our tracker suffers as the number
of targets increases, which is not unexpected. The latter
scenarios provide challenges to even the best trackers, in
terms of closely-spaced and possibly unresolvable targets.

For Scenario 1, Figures 3, 4, and 5 show plots of the metrics
relevant to the challenge problem, i.e. the track completeness
ratio, emitted energy, and dwell time. In the case of the latter
two, we focus on the performance of Sensor 1. We will go
into further detail for Scenario 1, as the performance charac-
teristics will be similar for most of the scenarios. Figures 6,
7, 8, 9, 10, and 11 emphasize this fact when compared with
Figures 4 and 5. In the case of the multiple target scenarios,
shown in Figures 12, 13, 14, 15, 16, and 17, for the most
part reflect the results shown in the single target scenarios
at the same time region. However, there is an additional peak
near the beginning of the scenario where the targets move into
formation, which thus requires more dwell time and energy in
order to resolve the targets.

We can see that track completeness remains at 100% except
for at a few key points. The spurious track ratio increases at
those same points, but the redundant track ratio remains flat.
This is indicative of spurious tracks (defined as tracks which
do not associate with any of the scenario’s truth objects), or
tracks being initiated as a result of false alarms. Before we
discuss the usage metrics, we emphasize the fact that only
track revisit dwells affect this metric; search dwells are not
taken into account[19]. As for the emitted energy, in Figure
5, the characteristic peaks and troughs in the plot are the
result of the tracking waveform selection algorithm. At the
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peak, the highest energy waveforms are used by the radar;
over time, the energy emitted decreases as the waveforms are
stepped down in 3dB increments. We note that there is a sharp
peak in the energy emitted and in the dwell times in the 570-
600s range. If we examine the output of the benchmark’s
Track Plotter at that moment in time (Figure 18), we can see
that this is where the three targets in the scenario begin to
overlap within the sensor’s field of view.

For Scenario 7, as shown in Table 3 the track completeness
dips significantly compared to the other scenarios. We can
attribute this to similar conditions in Scenario 1, i.e. target
crossover, and the fact that the targets may be unresolvable,
due to being closely spaced and maneuvering. At this
crossover, Fighter 3 becomes difficult to track due to the
constant revisit rates that the default solution employs, which
even results in track loss. Track switches (i.e. points at where
a track is associated with a different truth object) also occur
between Fighters 3 and 4 before they enter formation. Again,
this is due to resolvability issues between targets. Finally,
due to the nature of bistatic measurements, the targets may
be approaching the midpoint between two sensors, where the
bistatic measurement covariance becomes distorted due to
singularities in the r-u-v sine-space to Cartesian coordinate
transformations. As a result, this causes distortion and
inaccuracy in the linearized measurement covariance, which
then causes issues in tracking the targets.

While these results expose flaws in this solution, especially in
the case of dealing with unresolved targets, we must keep in
mind that this is intended to be a baseline for future solutions
by other developers and researchers in the MIMO radar
community. Hence, improvements such as better resource
management, data assigment tuned specifically for the MIMO
case, and so on are areas of future research.
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Figure 3. Plot of the track ratios; specifically the track
completeness (Scenario 1).

Table 2. MIMO Radar Benchmark scenarios

Scenario Active Targets
1 Fighter 1, Airliners A and C
2 Fighter 2, Airliners A and C
3 Fighter 3, Airliners A and C
4 Fighter 4, Airliners A and C
5 Fighters 1 and 2, Airliners A and C
6 Fighters 3 and 4, Airliners A and C
7 Fighters 1, 2, 3, and 4, Airliners A and C
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Figure 4. Plot of Sensor 1’s dwell times (Scenario 1).
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Figure 5. Plot of the energy emitted by Sensor 1 (Scenario
1).
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Figure 6. Plot of Sensor 1’s dwell times (Scenario 2).
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Figure 7. Plot of the energy emitted by Sensor 1 (Scenario
2).
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Figure 8. Plot of Sensor 1’s dwell times (Scenario 3).
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Figure 9. Plot of the energy emitted by Sensor 1 (Scenario
3).
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Figure 10. Plot of Sensor 1’s dwell times (Scenario 4).
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Figure 11. Plot of the energy emitted by Sensor 1 (Scenario
4).
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Figure 12. Plot of Sensor 1’s dwell times (Scenario 5).
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Figure 13. Plot of the energy emitted by Sensor 1 (Scenario
5).
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Figure 14. Plot of Sensor 1’s dwell times (Scenario 6).
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Figure 15. Plot of the energy emitted by Sensor 1 (Scenario
6).
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Figure 16. Plot of Sensor 1’s dwell times (Scenario 7).
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Figure 17. Plot of the energy emitted by Sensor 1 (Scenario
7).

Figure 18. Screen capture of the Track Plotter showing the
point of overlap of the three targets with respect to Sensor 1.
The circles are the beam points, the stars are measurements,
and the squares represent the track. Sensor 1 is offscreen, in
the lower right.
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Table 3. MIMO Tracker results

Scenario Average
Completeness
Ratio

Total Energy
(kJ)

Total
Dwell
Time
(s)

1 0.992 3004 83.382
2 0.996 3214 85.268
3 0.991 3245 86.277
4 0.991 3156 84.785
5 0.987 4143 99.391
6 0.912 4118 103.145
7 0.865 6526 138.478

6. CONCLUSION

We have presented a baseline MIMO tracking solution im-
plemented using the ONR/GTRI MIMO Radar Benchmark.
This solution demonstrates some of the challenges involved
in creating a complete MIMO radar tracking solution, while
providing a point of comparison for other solutions.

Future work includes examining the data association problem
more closely; i.e. which approaches would be more effective
in the MIMO environment, as well as any additional consid-
erations for tracking using bistatic measurements. The latter
is brought into consideration due to the fact that as targets
approach certain regions of the bistatic ellipse, specifically
the areas between the sensors in the bistatic pair, the measure-
ment model covariance will become distorted with respect to
the sensors. Effectively dealing with this distortion is still an
open issue.
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